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ABSTRACT 

This report provides a basis for the description of the 

mechanical and optical properties of birefringent, visco- 

elastic materials, and for the application of these materials 

in experimental stress analysis by photomechanics. The ex- 

perimental procedure is applied to two plane stress problems. 

Preparation of the model, characterization of the material, 

and the test apparatus are also described. 
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1. INTRODUCTION. 

Many problems in structural engineering related to the 

structural integrity of solid propellants or the deformation 

of heated metal and ceramic structures can be reduced to the 

stress analysis of a linear viscoelastic material. The 

stress analysis of bodies with irregular boundaries is such 

a complicated mathematical problem that it is frequently 

more simple to determine the stress state by experiments 

upon a model. This report deals with the extension of 

the method of experimental stress analysis known as photo- 

elasticity to viscoelastic materials. 

The basic idea is to manufacture a model from a trans- 

parent, birefringent material and to determine the stress 

state of the model by observation of the fringe pattern which 

occurs when the model is placed between Polaroids. In order 

to correlate the stress in the prototype with that of the 

model, the mechanical properties of the model and the proto- 

type must be similar. Thus,the material of the model must, 

generally, be viscoelastic. Birefringent materials having 

the desired mechanical properties can be manufactured from 

high polymers. 

The fringe pattern observed when birefringent materials 

are placed between Polaroids is due to the dielectric 

properties of the material. The isoclinic and isochromatic 

fringe patterns give information about the dielectric 
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properties at any instant. 

The dielectric properties of a birefringent, visco- 

elastic material at any instant depend upon the entire 

history of deformation. The fringe pattern changes with 

time, even 'when the stress or strain is constant. 

The relation between dielectric properties and mechani- 

cal state can be inverted. Thus, the strain or stress at 

any instant depends on the entire history of dielectric 

properties. This means that it is necessary to have a 

complete time record of the history of isochromatic and 

isoclinic fringe patterns in order to gain information 

about the present value of the stress. This is the main 

difference between photoelastic and photoviscoelastic pro- 

cedures. 

The applications described in this report will be 

limited to quasi-static problems. It will be seen that 

photoviscoelasticity is a practical tool for engineering 

design. 
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2. VISCOELASTICITY. 

2.1. Basic Equations. 

In the following sections, some results from the 

classical theory of viscoelasticity are presented,. The 

equations are limited to small displacements and quasi- 

static loads. The usual Cartesian tensor indicial 

notation and summation convention are used in some 

places and standard scalar notation in others. 

In rectangular Cartesian coordinates, the equili- 

brium equations are 

amOkm + fk = 0. (1) 

The body force fk will be negligible in the experiments. 

The cr km are the components of the stress tensor which 

is symmetric. The symbol am will mean partial deriva- 

tive with respect to the rectangular Cartesian coor- 

dinate xm, throughout the following discussion. 

The components of the strain tensor .skm are 

related to the displacement vector uk by 

Ckm = + (a, um+ am uk)’ (2) 

In order to write the stress-strain relations 

it is convenient to introduce the deviatoric stress s km 
and deviatoric strain e km defined by 

'km = cJkm - ‘13 Orr 6km, (31 
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ekm = 'km - ‘13 err 6km. (41 

where bkrn denotes the Kronecker delta. Then, for an 

isotropic material 

2G(t-7) ikrn(~) d7, (5) 

l/3 err = r 
t K(t-7) Err(~) d7. (6) 

LO 

Where, the dot indicates the derivative with respect 

to the argument indicated. 

The inverses of equations (5) and (6) are 

s 
t 

2ekm = o J(t-7) lkrn(7) d7, (7) 

8 = 
rr s ' l/3 B 

0 
(t-7) c&(d d7. (8) 

The functions G(t) and K(t), or J(t) and B(t) 

characterize the material and have the names: 

J(t) = shear creep compliance. 

B(t) = bulk creep compliance l 

G(t) = shear relaxation modulus. 

K(t) = bulk relaxation modulus. 

The material will usually be supposed homogeneous 

so that all functions are independent of the space co- 

ordinates. 

The functions are related by Volterra integral 

equations: 
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P 
JO 

G(t-7) J(7) dT = t, 

s 
E K(t-T) B(T) dT = ‘- 

(9) 

(10) 

Given J(t), G(t) can be calculated by solving (9) by 

the method shown in section 2.9; etc. 

The uniaxial stress field which is approximated 

by the tension test is of special importance. If 

0~1 # 0 while the other components of stress are zero, 

the deviatoric stresses are 

sll = 213 011' s22 =-l/3 all, s 33 = -l/3 011, 

01) 

and the others are zero. From equation (4)) (7),and 

W, 

r 
t 

51 = 'o D(t-d Al1 d-r , (12) 

s 
t 

52 = 93 = - 0 
V(t-'r) D(t-7) &(T) dT. (13) 

Where, 

D(t) = l/3 J(t) + l/9 B(t), (14) 

,,tt> = 3 J(t) - 2 B(t) 
' 

(15) 
6 J(t) + 2 B(t) 

The pair of functions D(t) and v(t) also 

characterize the material and have the names: 
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D(t) - tensile creep compliance, 

v(t) -"Poisson's Ratio" for creep. 

This definition for v leads to c = -v cx for the uni- Y 
axial creep test. This definition is not a unique 

generalization of the idea of Poisson's ratio for 

elastic materials. 

Solving equations (14) and (15) we have 

J = 2 (l+v) D, (16) 

B = 3 (1-2~) D. (17) 

Thus, the bulk creep compliance and the shear creep 

compliance and, consequently, the relaxation moduli 

can all be calculated from the functions v(t) and D(t) 

occurring in the equations describing the tensile test. 

The inverse of (12) is 

t 
51 = s o E(t-7) ill(T) d7. (18) 

The new function is related to the tensile creep com- 

pliance by the Volterra integral equation, 

s 
t D(t-7) E(T) dT = t, 
0 

(19) 

and has the name: 

E(t) - tensile relaxation modulus. 

The complete solution to a problem in linear 

viscoelasticity is determined by equations (1) - (4) 
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and a pair of the stress-strain relations such as 

(5) and (6). 

The solution must satisfy certain boundary 

conditions: Usually the displacement vector is given 

over part of the boundary while the stress vector Fk 

is given over the remainder. The stress vector is 

related to the stress tensor by 

Fk = ukmnm' (20) 

where n m are the components of the unit normal to the 

surface. 

2.2. Elasticity. 

The theory of linear elastic materials may be 

viewed as a special case in the theory of viscoelas- 

ticity when 

and 

J(t) = Job(t) (21) 

B(t) = Bob(t), (22) 

where h(t) is a unit step function: 

Then 

G = Go h(t), 

K = K. h(t), 

7 
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D(t) = Do h(t), 

E(t) = E. h(t). 
(25) 

The elastic constants Go, Eo, vo, and K. are 

related: 

Go = EO 
, 

2 o+v,> 

X0 = EO 

3 (1-2wo) l 

(26) 

(27) 

The field equations become 

amOkm + fk = 0 , (28) 

Ckm = + (a, um + am uk)t (29) 

'km = Ukm - l/3 err 'km' (30) 

ekm = 'km - '13 err 'km' (31) 

'km = 2Go ekm' (32) 

i/3 urr = K. err. (33) 

Thus, time plays the role of a parameter and does not 

appear explicitly in the field equations. 



2.3. Proportional Loading, 

An important class of problems are those for which 

the stress vector on the surface has the form 

Fk = Fk f(t) (34) 

The superposed bar will denote a function of the space 

coordinates only. This is termed proportional loading. 

Let us determine under what conditions the stress field 

has the form 

ckm = -6,, f(t), (35) 

- 
where akm can be determined from the theory of elasti- 

city. 

The boundary conditions (20) give 

a kmnm = Tk . (36) 

In the absence of body force, the equilibrium equations 

(1) give 

amokm = 0 . 

The deviatoric stresses are 

'km = Fkm f(t), 

( 37.1 

(38) 

where 

s 
- 

km = Ukm - l/3 err &km . (39) 

The stress-strain relations (7) and (8) give 
- 

ekm = ekm &) , (40) 
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8 = F rr rr k(t) ; 

where 

2 'km = l/Go 'km , 

T rr = 1/3Ko err 3 

g(t) = Go sz J(t-7) F(T) dT , 

k(t) = K. St B 
0 

(t-7) h (7) dT . 

The constants Go and 

Let 
KO 

are 

E: km = e km + l/3 bkm yrr. 

Then 

arbitrary constants. 

-F km = 1/2 (ak Vm + "m 'k) , 

(41) 

(42) 

(43) 

(44) 

(45) 

Uk = Vk g(t) , (46) 

only if g(t) = k(t) or err = 0; that is, only when 

B(t) is proportional to J(t) by a constant factor. 

From equations (16) and (17), 

B(t) = 3/2 l-2 v(t) J(t). (47) 
l+w(t) 

Thus B(t) is proportional to J(t) only when v is con- 

stant. Further, err = 0 only when v is a constant 

equal to l/2. 

If v is constant, then the stress and displace- 

ment are determined by (35) and (46) where the barred 

quantities satisfy the equations of elasticity, pro- 

vided the boundary conditions of the viscoelastic 
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problem agrees with (34), and (46). 

In fact v is never constantfor any material. But 

it frequently happens that the variation in v with time 

is slight or the effect of changes in v on the solution 

to the elasticity problem is slight. In these cases 

the stress field under proportional loading can be 

approximated by the elasticity solution. 

2.4. Plane Stress. 

If the stress components ak3 = 0, the equations 

of viscoelasticity can be simplified to the following: 

aBoa, = 0 y (48) 

(49) 

S a0 = u 
a0 - 113 err 6aB 2 (50) 

eaO = EaO - 113 Err ha0 Y (51) 

2ea0 = s ' J(t-I-) lao(T) dT , 
0 

c - s ' l/3 B(t-7) ;c&T)dT . rr- o 

(52) 

(53) 

The Greek indices have the range 1, 2 and all quantities 

are functions of x a and t. 

The equations (48) - (53) define a plane stress 

problem. There is an important class of plane stress 

problems, for which the solution is independent of the 

material properties, which we now consider. In this 

11 



case, the stress can be calculated from the corres- 

ponding elasticity solution. 

Equations (48) are satisfied by introducing the 

Airy stress function F: 

aa6 = E ay 7% ay % Fo (54) 

Where &ae is the permutation symbol (El2 = - E21 = 1, 

E 11 = &22 = 0). 

Eliminating the displacements from (49) gives 

’ ‘87 a6 aT a6 ‘a6 
=o. (55) 

This is the compatibility relation. 

Substituting (54) into (50) - (53) and the result 

into (55) leads to 

V4 F = aaBaaBaB F = 0. (56) 

If the boundary conditions are solely on stress, the 

equations (56) and the stress boundary conditions com- 

pletely determine the stress independent of the material 

properties and the stress is the same as for an elastic 

material. 

2.5. Short Time Solution. 

This section deals with a suddently applied load 

and the solution immediately after loading (that is, 

immediately after all wave propagation effects are 

completed). 

12 



The stress and strain fields are related by (5) 

and (6). For a step change at time zero, 

'km = =(o) ekm , (57) 

l/3 urr = K(o) err . (58) 

Thus, constitutive relations are identical to the el- 

asticity equations with elastic moduli equal to the 

values of the relaxation modulus at time zero. There- 

fore, the stress distribution at the instant of loading 

will be the same as given by the elasticity solution 

for shear modulus G = G(G) and bulk modulus K = K(G) 

or Poisson ratio v = v(G). 

2.6. Long Time Solution. 

The viscoelastic materials have a fading memory. 

That is, the stress due to a step change in strain 

decreases in time. The result is that when loads are 

maintained at a constant value, an equilibrium state 

is reached such that no further change in stress or 

strain occurs. 

BY (5) and (6), 

Skmb) = G(m) ekmb) # (59) 

l/3 or+) = I+) crrb). (60) 

The constitutive equations again coincide with linear 

elasticity. In this case the moduli are equal to the 

13 



values of the relaxation functions at time infinity. 

Consequently, if the surface loads remain constant, 

the stress state will eventually approach that of the 

elasticity solution for shear modulus G = G(a) and 

Poisson ratio v = v(w). 

2.7. Temperature Effects. 

Each of the material property functions is tem- 

perature dependent. That is, if the tensile test is 

conducted at different temperatures, the tensile creep 

compliance is a different function of time. In many 

instances this temperature dependence can be described 

by an empirical relation involving the so-called "time- 

temperature equivalence". The material is then termed 

thermo-rheologically simple. 

Let G(t) be the relaxation modulus at constant 

temperature T and G(t) b e the relaxation modulus at 

some reference temperature T : 
0 

14 



Suppose that the effect of temperature on the 

short time modulus and long time modulus is such that: 

G(o) = -aO), (61) 

G(m) = C(““). (62) 

In this case, there always exists a pair of times for 

which G and z have the same value 

G(t) = G(c). (63) 

The time ?is called the reduced time. It depends on the 

temperature T of the test and the time t at which the 

ordinate G is measured. 

Empirical evidence suggest that, for isothermal 

deformation of many materials, 

S = a(T) t. (64) 

The function a(T) of temperature is known as a tem- 

perature shift factor (in the sense of shifting the 

curves, if the figure were plotted on log time). 

Similar equations may be found to describe the iso- 

thermal values of the other material property functions, 

but the shift factor is usually different. 

Isothermal experiments cannot determine the nature 

of the stress-strain relationship for tests in which 

the temperature varies with time and no experimental 

evidence is available. A possible generalization which 

15 
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is compatible with the isothermal observations was 

proposed by Morland and Lee.* Their idea is that rate 

of change of the modulus is determined by the instan- 

taneous temperature. 

If G(t) is the relaxation modulus measured at 

varying temperature T(t), then (63) holds. Thus 

dG 
dt = 

dG x 
Bdt l 

(65) 

The fundamental hypothesis is that, for varying tem- 

perature, 

a(T) l (66) 

This agrees with (64) in the isothermal case. If tem- 

perature is a function of time for a given particle, 

and the material is homogeneous, 

c(t) = J; a(T(t)) dt . (67) 

This generalizes (64) to the case of varying tempera- 

ture. 

Now suppose the same temperature variation occurs 

but the strain is applied at time 7. Let F7(t) be the 

resulting relaxation modulus. Again assuming that the 

initial and final values are independent of tempera- 

ture, there exists a function c,(t) such that 

(68) 

* Trans. Sot, Rheology, 4, 233-263, (1960). 
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and 

dFT d% dG - -= - 
dt ds, dt l 

The fundamental hypothesis is 

dTT 
-= a(T) . 
dt 

Since 

F$d = -%O) , 

XT(T) = 0  l 

Thus, 

5, = r ’ a(T(t) ) dt = <(t 1 - C(T) . L 0 

The stress due to continuously changing strain is then 

(69) 

(70) 

(71) 

S = 
ij r ' 2 5(4;(t) - C(T)) gij(7) d7. (72) 

cO 

This relation is a hypothesis not yet conformed by 

experiment and it can be expected to give, at best, 

only approximate representation of the effects of 

temperature. 

2.8. Volterra Integral Equations. 

The various functions of time which describe the 

physical properties of a viscoelastic material are 

related by integral equations of the form: 

17 



s 

t D(t-7) E(I) d7 = t . 
0 

(73) 

The functions D(t) and E(t) have the general form: 

The function E(t) decreases monotonically toward a 

constant value, while the function D(t) increases mono- 

tonically to a constant value. The limiting values are 

related: 

E(O) = +I , 

and 

E(m) = D;m) ’ (75) 

A fundamen tal problem of viscoelasticity is to determine 

one function when the other is known. 

(74) 

Equation (73) has been exhaustively studied and 

various numerical procedures are known which will, in 

principle, allow th'e solution to be approximated as 

closely as desired. One may, for example, divide the 

time axis into finite intervals and make use of direct 

approximation of the integral by some numerical means 

such as the trapezoidal rule. 

18 



In principle, numerical integration leads to the 

exact answer as the size of the intervals tends to zero. 

Unfortunately, the various possible numerical proce- 

dures that may be used to approximate the integral are 

very sensitive to errors in the values of the functions 

and such errors are always introduced by round-off 

of the numbers. Moreover, the known function is fre- 

quently determined by experiment and, owing to experi- 

mental error, may not be such a smooth function as 

the exact value. Any such irregularities tend to mag- 

nify enormously if the numerical procedure is not 

chosen carefully. 

Several numerical procedures have been tried in 

order to determine E(t) when D(t) was known from ex- 

periments. The procedure of Hopkins and Hamming* seems 

to be the best. 

* J. Appl. Phys . , 28, 906-909, (1957). 
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3. TRANSMISSION 0-F -LIGHT. 

3.1. Plane Waves. 

Consider a phenomenon which varies with distance 

z and time t according to the law 

a cos (kz - w-t + c), (1) 

where a, k, w, e are constants. Such a phenomenon is 

referred to as a wave. The factor "a" is the amplitude 

and the argument of the cosine function is the phase. 

When considering the solution to a differential 

equation for a real variable, it is often convenient 

to consider the variable to be a complex number. The 

real and imaginary parts of the complex variable are 

then each solutions of the differential equation for 

the real variable. 

The function (1) is the real part of the complex 

variable 

ae icD 
I (2) 

where a is a complex number and 

cq = kz - cut . (3) 

Any phenomenon represented by (2) is also called a wave, 

This representation of a wave by complex varia- 

bles can be extended to vector valued functions: A 

complex vector will mean an entity for which the real 



and imaginary parts are real vectors. Vectors will be 

denoted by a subposed tilde. A vector valued wave then 

has the form 

a eiso , (4) 

~=kn= r- wt. N N 

The complex constant vector 2 will be called the ampli- 

tude vector. The real unit vector 2 defines the di- 

rection of propagation. The real vector L is the po- 

sition vector. The frequency of the wave is u). The 

wave number is k. The wave speed is defined as 

v = Lu 
k l 

The wave length is defined as 

Let the real part of a complex quantity be de- 

noted by a superscript +, the imaginary part by a super- 

script -, and the conjugate by a superscript *. The 

following terminology is used. 

a 0 a=0 - N N circularly polarized, 

a*xa=O - linearly polarized, rv N 

a 0 n=O - transverse. N Iu 

If z+, z-, and 2 form a right-handed system, the wave 

is called right-handed. Only right-handed transverse 

waves are considered in the following. 
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The real part of the complex wave is given by 

R(z) = z+ cosu-a-sincp . N 

Let si be the base vectors and 

+ 
a = a i gi , z- = a; gi . 

Then 

R(z) = Ql cos (w + El> g1 (5) 

fQ2 ~0s (cp + E2> g2 

"Q 
where 

3 cos(v + c3) g3 , 

Qi = 

and 

tan ei = q 
a. 1 

(no sum). 

Thus the vector valued wave may be regarded as three 

waves; each has the same frequency and wave number but 

different amplitudes and different phases. 

The case of a transverse wave propagating along 

the z-axis will be of particular interest,, Then z+ 

and z- lie in the x-y plane and Q 3 = 0. The vector 

expression (5) represents two waves of different am- 

plitude and phase. 

For the linearly pol.arized wave, 2*x 2 = 0. This 

implies that a+ x a- = 0. N Thus, s+ and a- are parallel. 

In that case, e1 = e2; the phase is the same but the 

22 



amplitude may be different: 

R(z) = Ql co.& + d i& + Q2 codcp + c> g2.W 

For a circularly-polarized transverse wave pro- 

pagated along the z-axis, the requirement 2 l a = o 
+ implies the a . a- are orthogonal and have the same N N 

length. In this case, the amplitudes are the same and 

the phase of the two component waves differ by TT/~: 

R(z) = Q cos(co + e) gl + Q sin(cp + 8 - 4) g2.(7) 

3.2. Dielectrics. 

This section is devoted to the theory of bire- 

fringence based upon the description of light as an el- 

ectromagnetic wave propagating in an anisotropic di- 

electric. The applications will be limited to quasi- 

static deformations so that, during the time of passage 

of an electromagnetic wave, the displacements of the 

material are negligible. The equations of a dielectric 

at rest can therefore be used. Furthermore, since only 

the relative intensity of monochromatic light will be 

observed, the absorption and dispersion will be neglected. 

The equations of an anisotropic dielectric then 

have the following form: 
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, -.- ., -_-----. 

u 
curl H - N at 

= 0. 

curl 2 + at = 0 o (9) 

Di = e. K.. E. . 
=J J (10) 

(11) 

The fields f? and 2 are also subject to the relations 

div B = 0 , hl 
div 2 = 0 ; 

but these will be satisfied trivially by the solution 

which will be obtained for (8) - (11). 

The tensor K.. iJ 
will be called the dielectric 

tensor. It is regarded in this chapter as known 

and constant. The term 'tanisotropiclf, as used here, 

merely means that the dielectric tensor does not 

reduce to a scalar multiple of the unit matrix. The e. 

and v. are fundamental electromagnetic constants. 

At a surface with unit normal vector ;, the fields 

are subject to the jump conditions: 

xx [El =o , 

x!’ Ql = 0 , 

x x @I = 0 , 

k!’ [El = 0 . 

(12) 

(13) 

It will turn out for the problems considered that the 

relations (13) are identically satisfied when the 

relations (12) are satisfied and consequently they are 
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not used here. 

Consider a plane wave , propagating in the 

material, given by the fields: 
. 

E=aelCD , N N 
. 

B=belCD , N N 
. 

D=delCD , N N 

H=hei" , 

041 

c3 = k n-r - wt , NrV 

where 2, II, 2, k are constant complex amplitude vectors. 

The field equations (8) - (11) give 
k 

k=;zxa, (15) 

d =-; 2 x h , (16) 

&=; b , 
0 

(17) 

a 1 =- 
i K-l d c ij j* 08) 

0 

Therefore the real parts of the vectors have the relation: 
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The index of refraction N is defined by 

N=kc 
w I 

where 

Eliminating 2 and 2 gives the equations: 

09) 

(20) 

a. = 1 - pot N KY: ejrs nr hs , (21) 

(6: - N2 6:;: Kii np nr) hj = 0 . (22) 

The relation (22) represents three homogeneous 

equations for the components of the real or the 

imaginary parts of 2. Thus, a wave exists only when 

the determinant of the coefficients is zero: 

Ciet = 1 - N2 bSt n -1 
ab a nt Kbs' + (23) 

The 6- symbols are the generalized Kronicker delta. 

Since N > o, there are exactly two indices of 

refraction, N 1 and N 2, determined by the roots to (23). 

If K.. 
iJ 

is symmetric and Nl # N2, the two corresponding 

solutions of (22) are orthogonal vectors. Consider the 

coordinate system with the z axis along n and the x, y 

axes along the directions determined by the solutions 
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of (22). In this particular coordinate system, 

K12 = K21 = o . 

That is, the two possible directions of & are the sec- 

ondary principal axis of K.. iJ in the plane normal to 2. 

The solution with i along the y-axis gives 

N=Nl=ql , 

1 
ai = 5, PO c h.2 2 

I 

The solution with 2 along the x-axis is 

N = N2 = JK22 , 

al =o, 

=-1 
a2 N2 p. ' hl' 

(24) 

(25) 

-1 a3 =-N2 K32 ~1, c hl. 

Thus, the two indices of refraction are the secondary 

principal values of K. lj 
in the plane normal to n . 

The case where 2 is normal to one of the prin- 

cipal axes is of particular interest. It is then 

most convenient to take the coordinate axes along the 

principal directions of K. ljm Consider the case when 

n is normal to the y-axis. For one of the two waves, 
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& is along the y-axis; 

In this case, 

N = Nl = 1 
-1 

Kl cos20 + K -1 sin20 
9 

3 

al = Nl 1-1, c KY1 cos 8 h2 , 

a2 = 0, 

-1 
a3 = - Nl 1-1, c K3 sin 0 hl . 

For the second wave, the vector 2 is along the y-axis, 

and 2 is normal to 2 and a o 

(26) 

In this case, 

N=N2=$, 

(27) 
h= N2so cnxa. N N N 
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The Kl, K2, K3 are the principal values of the tensor 

K ij* Similar results hold when 2 is normal to the first 

principal direction. 

In every case the real and imaginary parts of 

each field are determined by the same relations. They 

are therefore parallel and each field is a linearly 

polarized wave in the sense of section 3.1. The field 

H is also a transverse wave. 

The direction of 2 is called the direction of 

vibration. The direction of h is called the direction 

of polarization. It will be most convenient in the 

following sections to select the vector 2 as fundamental. 

The vector a is then determined by one of the relations 

(24) - (2% 

3.3. Normal Incidence. 

The solution of equations (8) to (11) subject to 

appropriate boundary conditions gives the laws of the 

reflection and refraction of light. These results are 

usually given in the form of geometric constructions 

which are very tedious to follow or else in approximate 

forms for which the nature of the approximation is not 

clear. The following sections give an analytical 

expression to the optical laws which will be needed 

in photomechanics. 



Consider a slice of the dielectric which is 

assumed to be homogeneous, i.e., K.. is constant. iJ 
Choose the coordinate axes so that the surfaces of 

the slice are z = C and z = h. 

If a plane, transverse wave is incident normal 

to one of the surfaces, part of the wave is reflected 

and part is transmitted. A similar reflection and 

transmission occurs at the second surface. There are, 

therefore, five electromagnetic waves having the 

following directions: 

A solution to the field equations is required 

when the incident wave is a plane transverse wave 

21 = 1, cpl=konn= 2 - wt. 

If Ll is parallel/to one of the secondary prin- 

cipal directions of K. 
lj 

in the plane z = constant, the 

fields 

3= 22 eicp2 , cp 2 = k. z2e 2 - wt , 

113= z3 e irp3 , cp3 = k z3= z - w-t , 
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H ice 

-4 
=z4e 4,w4=k24.s-uA, 

E5 = k5 e iw5 , cp5 = sE5. 2 - wt , 

have k2, g3, :43 and h -5 parallel to that principal 

direction. 

There are two fundamental cases, according to 

whether 2 is parallel to one or the other principal 

directions. The internal fields in each case are de- 

termined by (24) or (25). The solution for an ar- 

bitrary wave is a linear combination of these 

cases. 

In each case, the jump conditions (12), 

at each face, lead to the solution 

25 
= c ei(e - koh) El 

and 

25 = C e i(O - koh) 
El ' 

where 2N 

c = 4N2 cos2kh + (l+N2)2 sin2kh , 

tan 0 tan kh 

and N is given by (24) or (25). 

two 

applied 

(28) 

(29), 

(30) 

(31) 

m--YW 
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3.4. Oblique Incidence. 

Consider the case when the normal to the surface 

of the slice of dielectric is a principal axes of K. ij* 
Choose the coordinates along the principal axes of K. lj. 
The instance when the wave propagated in the dielectric 

is perpendicular to the y-axis will now be considered. 

The secondary principal axes of K. lj 
then coincide 

with the y-axis and the normal to the y-axis. The two 

waves given by (26) and (27) are then possible. 

Consider first the case when the incident wave 

has & parallel to the y-axis. The reflected and trans- 

mitted waves turn out to all have 2 parallel to the 

y-axis. The five fields have the directions shown: 

Applying the jump conditions (12) to these waves 

and using the solution (26) leads to the relation 

between incident and transmitted waves: 

25 = C e i(t3 - koh cos a) H 
-1 

(32) 
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and 

25 
= c ,i(e - koh cos a) 

Zl 9 

where 
2f C 

L+f2 cos2y + (l+f2)2sin2y' 

l+f2 tan 8 = 2f tan Y , 

Y = kh cos 13 , 

f = N cos 0 
Klcos a ' 

sin 0 = 1 - sin a , N 

1 
N = N1 = 1 K1 -COS 2 > 8 1 +K-sinp 3 2 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

and K1, K2’ K3’ are the principal values of K. lj* 
Consider next the case when the incident wave has 

2 normal to the y-axis. Then the solution (27) applies. 

Using the jump conditions, the relation between incident 

and transmitted waves is again found to have the form 

given above but with f and N given by new formulae: 

f = N cos B 
cos a I (40) 

N = N2 = JK2 e (41) 
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Every incident wave normal to the y-axis can be 

represented as a linear combination of these two cases. 

Similar results hold when the incident wave is 

normal to the x-axis. 

When the wave is along the z-axis, the results 

coincide with equation (30) and (31). 

3.5. Slightly anisotropic, transparent materials. 

The materials used in photomechanics are trans- 

parent isotropic materials for which straining causes 

a small change in dielectric properties. Let No denote 

the index of refraction in the undisturbed state and 

consider the propagation of light through a slice of 

thickness h. The dielectric tensor can be written 

K ij = N," (dij + $ Pij) , (42) 

where P.. 1J 
depends on the strain history and is zero 

in the undisturbed state. 

The exact relations of sections 3.3. and 3.4. for 

propagation of light through a slice will now be in- 

vestigated for the case when 

a> the material is slightly anisotropic, i.e., 

when P.. 1J 
is of order unity, and 

.b ) the material is nearly transparent, i.e., 

when No is of order unity. 
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There are two kinds of approximation involved. 

The first is, that the second term in (1) is small 

because 

c =C<<l. 
;lih (43) 

The parameter e is a non-dimensional characteristic 

number of the problem, usually having a magnitude about 

lo-5. Therefore terms of higher order in e can be 

neglected. The second is that the components K.. are iJ 
of order unity. In fact No is about 1.5, but the error 

involved by the second approximation does not exceed 

a few per cent, especially when only relative retarda- 

tion is observed. 

Consider first the results for normal incidence. 

The index of refraction is given by (24) or (25). 

Thus, 

'Nl = N; (1 + 8 Pll) z No(l + + E Pll (44) 

N2 = J N; (1 + E: P22) z No(l + + e P22). (45) 

Equations (44) and (45) are of the form 

NZN + e6 . 
0 

(46) 

Thus 

(47) 
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For simplicity, suppose that e is chosen such 

that the large number is an integer multiple of 

277. Then 

sin kh = sin (No-$ + 6) = sin 6 , 

cos kh = cos (No+ + 6) = cos 6 . 

The relation (31) becomes 
l tan 0 = l+Ng tan 6 , 

2Ko 

(48) 

(49) 

(50) 

for slightly birefringent materials. 

If No is 1.5, 
l+N,2 = 1.08 . 
2NO 

As No approaches unity,this factor approaches unity. 

Thus, in the two cases (44) and (45), 

l 

el = + No Pll 

and 

e2 z + No P22 , 

for nearly transparent materials. 

The relation (30) becomes 

~ 4 NEcos2P + (1+Nz)sin28 ' 

(51) 

(52) 

(53) 

for slightly birefringent materials. 
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The absolute value of C has the bounds 

2No 

l+Nz 
< c cl. 

The value is therefore nearly unity for nearly trans- 

parent materials; 

l$l. (54) 

Secondly, consider the problem of ablique inci- 

dence solved in section 3.4. From (42), 

Kl = N," (1 + C Pl) . (55) 

Thus, 
-1 

Kl z No2 (3 - c Pl) . (56) 

Similar expressions hold for K2 and K3 . 

The relations (37) to (39) lead to 

sin B z L sin u, 
NO 

Nl 
; No (1 + + pl + 9 P3 tan2 B) o 

(57) 

Thus, 

y : 
Nocos B 

E + 6, 
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where 

'6 = -$ No cos P (Pl + P3 tan2 @) . (58) 

Choosing E: so that(No cos S)/s is a multiple of 2rr, 

(35) becomes 

l+f2 tan@= 2f tan 6 . (59) 

If the angle of incidence varies, for example, 

from zero to 45' and No = 1.5, 

0.667 < f < 0.833 . 

In this case 

l+f2 1.01 I 2f < 1.08. 

Therefore, only a small error is made, if (59) is re- 

placed by 

8 : 6 (60) 

and (34) is replaced by 

CZl. (61) 

If equations (40) and (41) are used, then (60) 

and (61) again hold but with 

(62) 

in place of (58). 
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The two waves transmitted at oblique incidence 

therefore have, approximately, 

NO N 0 sin2B e, = ;2 Pl cos 8 + 2- cos B , 

No p2 
I 

P2 = 2 cos B ' 

(63) 

(64) 

when the material is slightly anisotropic and nearly 

transparent. These equations reduce to (51) and (52) 

for normal incidence. 

3.6. Approximate Optical Relations. -- 

The exact expressions of sections 3.3 and 3.4 

for transmission of light through a slice of dielectric 

are rather complicated because of the losses due to 

reflection at the entering and exiting surfaces. It 

was shown in section 3.5 how the formulae for light 

transmitted through a slice could be approximated when 

the material is nearly transparent and only slightly 

anisotropic. The approximate relations are now 

summarized. 

Consider the case of normal incidence when the 

normal to the surfaces of the slice is a principal 

axis of the dielectric tensor. Let 2 be a unit vector 

along the first principal axis (with index of refraction 

Nl and wave number kl) and q be a unit vector along H 
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the second principal axis (with index of refraction N2 

and wave number k 2 ) of the dielectric tensor. Let the 

incident wave be 

(66) 

where h 1 and h 2 may be complex constants. The trans- 

mitted wave is given by (28) applied to each component. 

Using the approximate expressions (51), (52) and (54), 

the transmitted wave is 

ET = &T eiw 9 

:T - =hlpe ice,- koh>+ h 
2% 

eiIe2-koh) 9 

el = $ No ~1 y 

e2 = i No p2 l 

(67) 

(68) 

(6% 

(70) 

In the case of oblique incidence at angle a but 

normal to the second principal axis of the dielectric 

tensor, the transmitted wave given by 

&T = hlx e i(e l-koh cosa) 
+ h*A e 

i(e 2-koh cos a) 
,(71) 

NO 
N . 2 

el = 2 p1 c0s2B + -p P3 "c;z , (72) 

No p.2 e2 = 2 cos @  ’ 
sin B =+j sin a . 

0 

(73) 

(74) 
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The exact expressions for transmission of light 

may also be approximated by simple relations in the 

case of certain special materials. Two examples - 

the polarizer and the quarter-wave plate - are of 

particular interest. 

An ideal quarter-wave plate is a slice of di- 

electric for which waves with k along the first prin- 

cipal axis are not retarded while waves with h along N 
the second principal axis are retarded by ninety degrees. 

Thus (68) becomes 

hT - = hl P + h2 e -i 1-r/2 
s* (75) 

The real part of the incident wave, according to (5) 

is 

R&l= Ql COS(C' + cl) E + Q2 cos(w + c2) S.(76) 

The real part of the transmitted wave is 

R&j = Ql cos(w + cl> P + Q2 cos(cp + c2-I-T/~) q . N 
(77) 

A situation of particular interest occurs when 

the incident wave is a plane polarized wave with 2 

making an angle of 45O from 2 toward 2. Then Ql = Q2 = 

Q and cl = s2 = 8. The transmitted wave is, according 

to (7), circularly polarized. 
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An ideal polarizer is a dielectric for which 

the first principal index of refraction is nearly unity 

and the second is very large. From (3% it is seen 

that when & is parallel to the first principal axis 

C z 1 and when 2 is parallel to the second principal 

axis C E 0. Given an incident wave 

H, N =heiw , (78) 

the transmitted wave is 

(79) 

The real part of the incident wave, referred to 

arbitrary x-y axis in the plane of the slice, is 

R($) = Ql COS(CP + cl) gl + Q2 COS(W+~~) &* 

The real part of the transmitted wave is 

R($) = Ql cos a cos(cp + El) 2 

+ Q2 sin a Cos(cp + c2) 2 (80) 

when a is the angle between the axis of the polarizer 

and the x -axis. 

3.7. Plane-Polariscope. 

The term po'lariscope is a general expression re- 

ferring to any of various possible arrangements of 

polarizer and quarter-wave plates in order to view a 
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nearly transparent dielectric. In the plane-polariscope, 

light is passed through a polarizer, and then through 

a second polarizer (called the analyzer). The trans- 

mitted light exhibits interference fringes which are 

now investigated. 

Let the unit vector E be directed along the axis 

of the polarizer. Then, by (79)’ the light from a 

monochromatic source which is transmitted by the pola- 

rizer is such that 

E = A 2 eicp. (81) 

The origin of coordinates can be chosen so that A is 

a real number. 

Choose the z-axis normal to the dielectric and 

let the x-y axes be directed along the secondary prin- 

cipal axes of the dielectric tensor. Only the case of 

normal incidence will be considered, but identical 

results hold for the oblique incidence. 

Let 5 be the angle between 2 and the x-axis: 

The wave incident on the dielectric is such that 

g = (A COS c &)+(A sin 5 g2) eirp. (82) 
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By (68), the transmitted light is given by 

E = {A cos 5 eils, - 'oh)& 
1 

+ A sin 5 ,i(R, - koh)g2 } eiw. (837 

The light is next passed through the analyzer. 

Two cases are of special interest. 

Case 1: Crossed Polarizer-Analyzer. 

Let the axis of the analyzer be described by the 

unit vector q. Ly Consider the case when 2 makes an angle 

5 + 1-r/2 with the x-axis: 

The light transmitted by the analyzer is then, by (79)' 

H= Qy - Aces 5 sin < e i (8, - koh) 

+A sin 5 cos 5 e i(8,- koh)} z eiw 

= Q. (84) 

The real part is 

R(H)=A sin 25 sin nrr COS(Q - koh - s), (85) 

where 
0, - 02 

n= 
21-r 
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and 8 is determined by I31 and e2. The variable n is 

called the fringe order. 

It can be seen from (85) that there will be zero 

light intensity at those points for which the principal 

axes of the dielectric make an angle of zero or 90' 

with the axis of the polarizer. The locus of all such 

points form lines on the model called isoclinic lines. 

There will also be zero light intensity where the 

fringe order n is an integer. The locus of all such 

points form lines on the model which are called iso- 

chromatic lines. 

If the loss of light by reflection is not neglec- 

ted, it is found that the isochromatics are only 

approximately given by integer fringe orders and the 

intensity is not zero. But, this approximation seems 

to be adequate for nearly transparent materials. 

Case 2: Parallel Polarizer-Analyzer. 

Let the axis of the analyzer have the same di- 

rection as the polarizer, i.e. 2 = CJ . Then, by (79)' 

the light transmitted by the analyzer is 

H= Acos2c e i(e,-koh) 

+ A sin2c e i(Q-koh)} eicP 2 (87) 

= H;e. 
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The real part is given: 

R(H) = A Q cos(w - koh + e), (88) 

where 

Q2 = cos4< + sin4c + 2 cos2c sin2c cos 2ni-r. (8% 

The minimum values of Q occur when n is an odd 

multiple of 3. The isochromatic lines, in this case 

connect all points for which n is 9, j/2, etc. They 

are referred to as half-order fringes. 

3.8. Circular-Polariscope. 

The isoclinic lines and the isochromatic lines are 

superposed in the case of the plane polariscope. In 

order to observe the isochromatic pattern more easily, 

a circular-polariscope is used. The circular-polariscope 

consists of polarizer, quarter-wave plate, model, quarter- 

wave plate, and analyzer. As will now be shown, the 

isoclinic lines do not appear on the model. 

Let gl be the axis of the polarizer. Let x2 and 

s2 be the axis of the quarter-wave plate. Only the case 

when gl makes an angle of 45” between g2 and s2 will be 

considered: 
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The light transmitted by the polarizer and quarter-wave 

plate combination is, according to section 3.6, cir- 

cularly polarized: 
. 

E = A (E2- i s2) elCP = A (gl- iE2)e i (cp+C 1 . (90) 

Again A can be chosen to be a real number. 

The light is then passed through a nearly trans- 

parent dielectric. Let the x-y axis be principal 

axis of the dielectric. The transmitted wave is given 

by (68): 

E = A .i(w + C-koh) 
{ &l e 

i 0, -ig2e i0, 
1 (91) 

= A .i(u, + S-koh) {(eie' cos 5 - i eiez sin c)E 

+ (-e i& sin c- i e i.0, 
cos c)g > , 

Different possibilities now arise depending on the 

orientation of the second quarter-wave plate and the 

analyzer. Only four will be considered. 

Case 1: Quarter-Wave Plates Augment and the Polarizer- 

Analyzer are Parallel. 

Let 23 and s3 give the axes of the second quarter- 

wave plate and g4 the axis of the analyzer. Only the 

case when 24 makes an angle of 45’ between ;e3 and s3 

will be considered, Now, let the quarter-wave plates 

augment and the polarizer-analyzer be parallel, 
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i.e. f?3 = 22’ 83 =2322 24 =& : 

The wave transmitted by the quarter-wave plate is 

E = A ei(W + c- koh) (ei% cos 5 -i e ie2 s  in 0~~ 

+ (-e i8, cos 5 + i e i8, 
sin c)~3} 

(92) 

The wave transmitted by the polarizer is given by 

g=Q,, (93) 

H=A&e i(~+PC-koh) 
{ e ie, _ eie, 

> (94) 

The real part is 

R(H) = Q cos (cp+25 - koh + C) (95) 

where 

Q = A $z sin 2nrr . (96) 

Thus, isochromatic lines give integer fringes. 

The isoclinics do not occur. 

48 



Case 2: Quarter-Wave Plates Opposed. Polarizer- 

Analyzer Crossed. 

Consider the case when 23 = s2, s3 = - x2: 

The wave transmitted by the quarter-wave plate is 

H=Ae i(co+C - koh) (i cos 5 e i 8, +sin 5 e iez Is3 (97) 

+ (-sin 5 e i 8, - i cos 5 e ie2 > P3}. 

The wave transmitted by the polarizer is 

H=Ahe i(cD+2c - koh '5) ei@,-eie, 
> . (98) 

The real part is 

R(H) = A J2 sin 2nrr cos(cp+2c - koh + ; + e). (99) 

In this case also, the isochromatic fringes are of 

integral fringe order. 

3: Case Quarter-Wave Plate Aligned. Polarizer-Analyzer 

Crossed. 

The first two cases give a dark field in the 

absence of a model and yield integral order fringes. 
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By effectively rotating the analyzer, a light field is 

obtained which yields half-order fringes. 

Consider the case x3 = g2, s3 = s2. The wave 

transmitted by the second quarter-wave plate is then 

g== A ei(w+C-koh) (cos 5 e i9, -i sin 5 e (100) 

+ (-i sin 5 e i8, + cos 5 e iez 123 } 

The wave transmitted by the analyzer is 

H=A$e i(w-koh+eie, + ei% ) . (101) 

The real part is 

R(H) = A J2 cos nrr cos(cp- koh + s). (102) 

Thus, dark lines correspond to prints for which n is 

an odd multiple of $. 

4: Case Quarter-Wave Plates Oppose. Polarizer- 

Analyzer Parallel. 

Consider the case 
23 = g,Y 23 = @y The wave 

transmitted by the analyzer has the real part: 

R(H) = A J2 cos nn cos(cp- koh + 9 + e) (103) 0 

The isochromatic lines are again half-order fringes. 



In each of the four cases the phase of the wave 

contains a factor c which is determined by Ol and e2 

but is not listed because it does not effect the fringe 

pattern. 
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4. BIREFRINGENCE. 

4.1. Rheo-Optic Constitutive Relations. 

The materials used in photo-mechanics are such 

that the dielectric tensor is a function of the history 

of strain. The material is isotropic, in the sense 

that response of a sample cut from a sheet is inde- 

pendent of the orientation of that sample. For small 

displacements, the relation will be linear: 

K ij =N28 +6 0 ij ij s 
' A(t-&kk(.T) d7 
0 

+ s ; 2z(t-&j(T) d7 . 

(1) 

In terms of the mean and deviatoric parts, 

R ij = K..- l/3 6 iJ ij Krrr 

the relation (1) has the form: 

K rr = 3 N,2+ sot [3z(t-T)+ zZi(t-&&) d7, (2) 

R = ij s 2 2B(t-7); ij(~) d' . (3) 

Using the stress-strain law of chapter 1, the entirely 

equivalent expression for the dielectric tensor in 

terms of stress history is found: 

52 



K rr = 3N,2 + j-," ?(t-+$r) dT, 

R ij = s; B(t-&ij(') d7, 

where 

C(t) = JiC3Tl(t- I-) + 2$t-T)] &T> dT , 

D(t) = J; B(t-7) &> dT l 

(4) 

(5) 

(6) 

(7) 

The deviatoric part is especially important for 

the interpretation of the fringe order, The inverse 

of (5) will be important. It is 

S ij = j-2 F(t-7) ;Lij(7) d7, (8) 
- 

where E(t) and D(t) are related by the integral equation 

discussed in section 2.9. These functions play an im- 

portant role in photomechanics and will be given the 

names: 

at) - optical creep function , 

-E(t) - inverse optical creep function. 

4.2. Stress and Strain Birefringence. 

Consider the possibility 

i(t) = x0 h(t) , (9) 
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where h(t) is the unit step function. 

R ij = 2Bo e.. 
=J , 

E(t) = + G(t) , 
0 

D(t) = B. J(t) . 

Then 

(10) 

(11) 

(12) 

In this case the deviatoric part of the dielectric 

tensor, and therefore the observed fringe order in a 

polariscope, is directly related to the strain. A 

material for which (9) holds may be termed strain- 

birefringent. The isoclinic angle then coincides 

with the principal axis of strain. 

Consider the possibility 

D(t) = To h(t) . (13) 

Then, 

R ij =Do s. lj ' (14) 

B(t) = Do G(t) , 05) 

-E(t) = + h(t) . (16) 
0 

Such a material may be called stress-birefringent. 

The fringe order then gives the difference in prin- 

cipal stresses and the isoclinic angle coincides with 

the principal axes of stress. 
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Consider an elastic material which is stress- 

birefringent. Combining the relations of section 2.2 

with (13) - (16) leads to a relation of the form (10). 

Thus, a stress-birefringent elastic material is also 

strain-birefringent. Similarly, a strain-birefringent 

elastic material is also stress-birefringent. 

Consider the possibility 

D(t) = a h(t) + 3 b J(t), 07) 

where a and b are constants. Then, 

R ij = a s.. + b e.. 1J 1J (W 

Thus, the general expression includes the possibility 

that the fringe order depends on a combination of the 

stress and strain. The relation (18) is often in 

fair agreement with experiment. 

The list of such special cases is endless. The 

relations obtained may describe some materials accurate- 

ly enough for some applications, but they are certainly 

not universal. The relation (18) is particularly useful 

in qualitative reasoning, i.e., to exercises of 

"physical intuition". 

4.3. Slow on Rapid Motion. 

The constitutive relations (1) are of the same 

form as the stress strain laws of viscoelastic 
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materials. Thus, the same approximation theorems hold 

for both relations. 

For sufficiently rapid straining, by (3)' 

R ij = 2 B(O) eij l (19) 

The material is strain birefringent. Since, by (57) of 

chapter 2, the material is elastic under such straining, 

the material is also stress-birefringent. 

For slow straining, by (3)' 

R ij = 2 B(a) eij . (20) 

The material is strain-birefringent. Since, by (59) 

of chapter 2, the material is elastic for slow straining, 

it is also stress-birefringent. 

4.4. Temperature Dependence. 

Each of the material properties functions of 

section 4.1 is temperature dependent. From the ex- 

perimental observations of the similarity of mechanical 

and optical creep, it may be expected that materials 

which are thermorheologically simple in their mechani- 

cal behavior are described by similar relations for the 

optical behavior. 

Let the reduced time be defined by 

C(T)= s,’ b@(t)) dT 0 
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The function b(T) of temperature may be termed the 

optical shift factor. An optically and thermo-rheologi- 

tally simple material is then defined by the constitu- 

tive relation: 

R = ij r~ 2~(S(t)-S('))~ij(T) d'~ (22) 

This generalizes the relation(j). 

It may happen that the mechanical and optical 

shift factors are the same. However, this must be 

determined experimentally. 
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5. BASIC FORMULAE FOR PLANE STRESS. 

5.1. Normal Incidence. 

Consider a slice of material of thickness h which 

experiences a state of plane stress described in 

section 2.4. The state of stress is to be determined 

by observing the isoclinic and isochromatic fringe 

patterns in a polariscope. 

The fringe order n and the isoclinic angle 6 are 

observed as a function of time. The results of chapter 

3 are used to derive information about the dielectric 

tensor. Although the solution obtained there is exact 

only when K. 
=j 

is constant, it will be used here as an 

approximate solution when K. =j 
varies in both time and 

space. This approximation will be satisfactory as 

long as the time scale of the mechanical behavior is 

long compared to the time p , about 10 -10 seconds; 

that is, the time required for light to traverse the 

model. The results of chapter 4 are then used to 

derive information about the stress tensor. 

The x-y axis may be chosen arbitrarily. The 

principal axes of stress are then located at an angle 5 

from the x toward the y axis: 

tan 25 = ~ 2TX 

X 

_ z =2sxy* 
Y S ‘S x Y 
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The principal stresses are given by 

al 
= 

uX cos 25 + 
OY 

sin2<+ 27 XY 
sins cos 5 Y 

a2 = cJx sin2<+ (5 Y 
cos25- 27 xy sin< cos< . 

Thus, 

al-u2 = CUX WY) cos 25 + 27 XY 
sin 25 

= (sx- sy) cos 25 + 2s XY sin 25 . 

Alternatively, 

uX = a1 cos25 + a2 sin25 , 

OY = u1 sin25 + 0 2 cos2<, 

7 = 
XY (9 -0,) sin 5 cos 5 . 

Thus, 

S - s X Y = ux-u Y= (9 -a,> cos 2 5 , 

S = 7 = 
XY XY * (a1 -a21 sin 25 . 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

03) 

(9) 

00) 

Equations (1) to (10) are simple consequences of the 

tensor character of the stress tensor CJ. ij* Similar 

relations hold for the dielectric tensor. 
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Let 5 denote the angular orientation of the 

principal axis of Kij in the plane. Then, 

Rx - R Y 
= Kx- K Y 

= (Xl - K2) ~0s 25 , (11) 

R =K 
XY XY 

= +(Kl- K2) sin 25 . 

By (42) of section 3.5, 

Rx- R 
NZC 

Y = - (P1- wh p;r) cos 25 , 

NZC 
R =+c XY 

(Pl-P2) sin 25 . 

BY (51) and (52) of section 3.5, 

4nNoc 
Rx- R = Wh Y 

n cos 25 , 

2rrNoc 
R = wh XY 

n sin 25 , 

(12) 

(13) 

(14) 

05) 

(16) 

and n is the isochromatic fringe order. 

By (5) of section 4.1, 

n cos 25 = s; Y(t-7) & [b,W U~(T))COS '2C(~)ld+17) 

n sin 25 = s," Yet-7) g ~ulW Us) sin 2C(T)ldT;(18) 

where, 

-5 . 09) 
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(0 l-a2) cos 25 = /:$(t-T) % [n(T)cos 25(7)] d7, (20) 

(ul-u2) sin 25= J," @(t-7) 5 [n(T) sin 25(7)] dT';(21) 

where, 

Q = 
477Noc 

E 0 (22) 
wh 

Equations (20) and (21) can be used to determine 

the difference in principal stresses and the orientation 

of principal axes of stress at a point from the observed 

history of fringe order and isoclinic angle at the 

point with normal incidence of light. 

The principal axes of stress and strain coincide 

with the isoclinic angle if and only if the isoclinic 

angle is constant. Otherwise all three sets of prin- 

cipal axes are different. 

By (8) of section 4.1, 

When the isoclinic angle is independent of time, 

the equations (20) and (21) give the result: 

al-O2 = s," @(t-T) ;I(T) d7 . 

Inversely 

n = si Y(t-7) % [01(7)- 02(T)]dT . 

(23) 

(24) 
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5.2. Oblique Inciden~ce. 

The observation of the history of the fringe 

pattern with the incident light directed normal to the 

slice gives the difference in principal stresses and 

the orientation of the axis of principal stress. The 

values of the two principal stresses are, therefore, 

not determined solely by the observation of fringe 

order and isoclinic angle at a point with normal inci- 

dence. 

If the principal axes of stress are found to have 

the same orientation at all times, then the method of 

oblique incidence can 'be conveniently used to give a 

third independent piece of information: From the com- 

bined observations with normal and oblique incidence 

the two principal stresses can be calculated. If the 

principal axes of stress are not independent of time 

the method of oblique incidence can still be used but 

the relations are more complicated and will not be given 

in this paper. 

The z-axis is normal to the slice and the x,y- 

axes are taken along the principal axes of stress. The 

case when the principal axes of stress do not change 

with time will be considered, By (5) of section 4.1, 

the principal axis of K. lj 
do not rotate. Thus, the x, 

y-axes are principal axes of the dielectric at all 
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times. As an example, suppose that the incident light 

is directed normal to the y-axis and making an angle a 

with the z-axis. The fringe order ,can be related to 

the dielectric tensor by (72) - (74) of section (3). 

The dielectric tensor is related to the stress tensor 

by (4) and (5) of section 4. Combining these. relations 

for the case when the x,y-axes are the principal axes 

of both stress and dielectric tensors leads to the 

relations. 

n= sz ir(t-T) [cl(~) cos28 - C,(T)] dT . 
cos 0 

(25) 

Where, again, 

sin 0 =+ sin a , 
0 

Y =.-XL 
4nNoc 5. 

The inverse relation is 

2 O2 
9 cos 0 - cos f3 = j-," @(t-T) A(T) dI-, 

9 = 
4nNoc 

rub r . 

(26) 
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6. PREPARATION OF MOD-EL MATERI.A&. 

It is usually desired to determine the stress in a 

viscoelastic solid from observations on a geometrically 

similar model. The experimental procedure determines the 

stresses in the model. The correlation with the prototype 

generally requires that the viscoelastic properties of the 

model be similar to those of the prototype: The Poisson's 

ratio in creep w(t) must be the same and the tensile creep 

compliances must be proportional for the model and prototype 

materials. Differences in Poisson's ratio do not generally 

lead to significant errors. The compliances are always 

proportional for elastic materials; and so, the choice of 

model material does not present a problem in photoelasticity. 

It is generally necessary to manufacture a new material 

for each viscoelastic experiment. One such material is 

described in this section. Many other materials could be 

used. 

An epoxy mixture made from components manufactured by 

the CIBA Co. can be made to give considerable variation 

in viscoelastic properties. The material described here is 

made of CIBA Araldite 502,508, and 963, in the proportions 

45/45/10. Two different batches referred to as A and B, 

having the same formula, are described. 

A mold is prepared to zast sheets of the material $ inch 

thick and two square feet in area: Sheets of plate glass are 
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used for the two faces of the mold, $ inch surgical tubing 

forms a gasket between the sheets on three sides, the thick- 

ness is controlled by i inch spacers placed between the glass 

faces and outside of the gasket. 

This epoxy formulation is a very tenacious adhesive 

and care must be taken to insure mold removal: The surfaces 

must first be cleaned with a solvent. Three light coats 

of a Carnuba-base wax are then applied, allowing each coat 

to partially dry and polishing it before application of the 

next coat. Finally all surfaces are sprayed with a polyvinyl 

alcohol solution which when properly applied and dried forms 

a smooth water soluble film. Some experience is required to 

evolve a spraying technique which gives a glassy smooth 

surface. The Carnuba base wax and the polyvinyl alcohol 

solutions are available through most commercial fiberglass 

suppLy houses. 

At room temperature the viscosity of the uncatalyzed 

resin components is such that small air bubbles will become 

trapped in the mixture while stirring, resulting in a poor 

casting. If the mixture is placed in a vacuum some bubbles 

will be drawn out but the mixture will catalyze before all of 

the bubbles are gone. However, if the resin components are 

heated to 130'F prior to mixing the viscosity is lowered 

sufficiently to allow entrained air to float off before 
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solidification. Heating the components reduces the pot life 

of the mixture to less than five minutes after the hardener 

is added. Final mixing and pouring into the mold must be 

done quickly. A paddle mounted at the end of a rod and 

driven by a slow speed drill motor facilitates mixing. 

The resin is cured in an oven for 12 hours while the 

temperature is maintained at 160 f 5'F. The mold is taken 

from the oven and the clamps removed. The rubber-tube 

gasket is stripped off and a razor blade is used to cut 

around the edges between the cast sheet and the glass. Wooden 

wedges are slowly pressed between the edges of the glass 

faces while the sheet is held under running water. 

Careful prying will remove the mold after about five 

or ten minutes. The newly cast sheet is washed to remove the 

mold release agent and placed on a flat paper or teflon 

coated surface to relax to equilibrium. 

After the sheet has relaxed for a day, models and speci- 

mens may be laid out on the sheet. These shapes are cut from 

the sheet on a band saw at high speed with a skip-tooth blade. 

Machining accurate models from this material presents 

some problems. If the material is clamped lightly in a vice 

or a chuck it relaxes and becomes loose. If the vice or 

chuck is tightened enough to hold the part, the part becomes 

distorted so that a flat surface or a square edge after 

removal from the jig is no longer flat or square. Another 
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difficulty appears when a heavy cut is made: The tool mashes 

the material under it slightly so that after relaxation the 

part is larger than expected. 

These difficulties have been overcome by using double- 

sided adhesive tape to hold the model to the face plate for 

turning operations and by taping the jaws and bottom of the 

vice for milling operations. If sharp corners are required, 

the model may be taped on both faces and sandwiched between 

l/8 inch Plexiglas, the sandwich being then taped on both 

edges and very lightly clamped in a vice. If a particular 

dimension is desired, it should be approached slowly with 

fine cuts. When the machine has reached the final setting, 

the specimen is allowed to relax for 15 to 30 minutes and the 

last cut is made at the same machine setting. This process 

can be repeated if extreme accuracy is required. 

Flat surfaces and edges are cut with a sharp fly cutter 

running at high speed. Circular section can be turned in a 

lathe at high speed using a sharp pointed tool with about 

35' rake. Holes may be drilled if the model is sandwiched 

between Plexiglas and the drill is sharp and turned at high 

speed. 

For some models it is helpful to cool the model in a 

refrigerator immediately before machining. The material is 

quite stiff at 40°F. 

The models have been machined dry. If a coolant is to be 
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used, experiments should be made to determine if the coolant 

accelerates the growth of edge fringes. Water, for example, 

will considerably accelerate the growth of edge fringes. 

Finished models stored at normal room conditions will 

be useable for several weeks or more before edge fringes be- 

come excessive. Carnuba wax, acetone, n-heptane, methyl- 

enedichloride and water will accelerate edge fringe growth. 

A dessicating atmosphere will retard edge fringe growth. 

The photoviscoelastic material is calibrated in a ten- 

sile creep test. A typical tensile specimen $I1 thick by 

0.6” long is shown in Fig. 1. Usually six or eight cali- 

bration specimens are cut from each sheet of model material. 

Experiments have shown that specimens cut from different 

locations and orientations in the sheet yield the same 

creep behavior. 

The entire batch of specimens may be stacked on edge 

and milled to a uniform width in one set-up with a fly cutter. 

Aluminum tabs are bonded to each end of each specimen with 

Eastman 910 and the specimens are placed on edge on a flat 

surface to relax before testing. By having six or eight 

specimens any one specimen has enough time to relax between 

tests while the other specimens are tested. 

68 



7. MATERIAL CHARACTERIZATION. 

7.1. Creep Test. 

The mechanical and optical properties are deter- 

mined by the tensile creep test: A constant uniaxial 

stress. is applied and the strain and birefringence 

are recorded, figure 2. The load is applied to the 

specimen by releasing a weight and total change in 

length is measured with a differential transformer. 

The load is measured with a beam instrumented with 

strain gages. The time interval during loading is 

approximately 0.2 seconds. A calibrated clip gage, 

made by bending a 0.010 inch thick strip of aluminum 

and instrumenting it with strain gages, is used to 

measure the changing width of the specimen as it creeps. 

All strain gages and differential transformers 

are powered by, and their outputs recorded on, a 

6-channel Brush recorder with a calibrated time base. 

The fringe growth is also automatically recorded: 

The output of a mercury-arc lamp is filtered with a 

Wratter 77A filter which passes the green line 

(5460 i) of mercury. This light is passed through a 

polarizer (Polaroid),through the creep test specimen, 

through a second polarizer with axis at right angles 

to the first and then into a photomultiplier tube. 

The output of the photomultiplier tube shows the periodic 
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increasing and decreasing of light intensity. The 

maximums and minimums of this curve are well defined 

and represent increasing integral fringe orders,, 

The model is enclosed in a box which has electric 

resistance heaters, automatically controlled to maintain 

a set temperature f 0.2'F over the range from room 

temperature to 150'F. Circulating fans within the test 

chambers insure a uniform temperature. 

The glass transition temperature for the model 

material is in the region of room temperature. Small 

changes in temperature (5'F) cause marked changes in 

mechanical behavior. At 130 to 150'F the relaxation 

time is very short and the material is rubbery while 

at 32'F it is quite rigid. 

For the tensile creep test, the principal axes of 

stress, strain, and refraction coincide. Let o denote 

the tensile stress . Equation (24) of section 5.1 leads 

to 

s(t) = * . 

From (12) of section 2.1, 

D(t) = 
ExW 

u l 

From (13) of section 2.1, 

(1) 

(2) 

(3) 
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Then J(t) and B(t) can be calculated from (16) and (17) 

of section 2.1. 

J = 2(1+ w) D, (4) 

B = 3(1- 2~) D. (5) 

The constant stress cr is taken to be the load 

divided by the undeformed cross-section area. The 

successive peaks on the light intensity curve corres- 

pond to integer values of the fringe order n. By 

observing the time of occurrence, the optical creep 

function $(t) can be determined from (1). A graph of 

$ determined at room temperature for mix A is shown in 

Fig. 3. The results of tests at various temperatures 

are shown in Fig. 4. for mix B. These two mixes were 

of the same proportions of raw material but show a 

slight difference in their mechanical and optical 

properties. 

The longitudinal strain was taken to be the total 

change in length divided by the original length. The 

tensile creep compliance D(t) computed by (2) is shown 

in Fig. 5, and the transverse contraction ratio v(t) is 

shown in Fig. 6. Because of the small change in 

thickness the lateral strains are difficult to measure, 

and the large band of experimental data in Fig, 6 is 

due to this experimental error rather than any real 
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variation of material properties. The shear creep 

compliance J(t) and bulk creep compliance B(t) cal- 

culated from (4) and (5) are shown in Fig. 7 and 8. 

In the tests at higher temperatures of mix B, only the 

longitudinal strain was measured. The tensile creep 

compliance is shown in Fig. 9. 

If the dependence of the final data on temperature 

is neglected in Fig. 4, then the temperature dependence 

of the creep functions over this small change of tem- 

perature can be reasonably well described by a tem- 

perature shift factor. The optical and mechanical shift 

factors are shown in Fig. 10. 

The optical creep function is also reasonably 

well described by the empirical relation (18) of section 

4.2 with a = 18.4 x low3 in/lb2 and b =36.8. 

The resulting error is 20% for some ordinates. 

In order to analyze the photoviscoelastic data it 

is necessary to calculate the inverse of the optical 

creep function $(t) related to G(t) by 

J’,” Q(t) $(-b-T) dT = t. 

This equation is solved by a numerical technique in 

conjunction with the digital computer as described in 

section 2.9. The results are shown in Fig. 11 for one 

case. 
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7.2. Thermal Properties. 

The coefficient of thermal expansion was measured 

in the jig shown in Figure 12. The specimen rests on 

a Teflon-coated surface of the jig and one end is bonded 

to the jig. A metal tab is bonded to the free end of 

the specimen and a fine wire soldered to the tab leads 

to one terminal of an ohmmeter. The ohmmeter registers 

a short circuit when the micrometer is brought to touch 

the free end of the specimen. By using this system the 

micrometer measurements may be repeated to within 

f 0.0002. Such accuracy cannot be obtained by mechani- 

cal feel due to the low modulus of the model material. 

The jig was placed in an oven, allowed to come to 

equilibrium at several temperatures and changes of 

length were measured. The hysteresis was determined 

Ly approaching a given temperature from above and below 

and was small. The temperature was varied between 

70 and llO°F and the coefficient of thermal expansion 

was calculated to be 1.06 x 10e4 
. 
In 

in - OF 
zt 6% . 

Correction was made for the expansion of the measuring 

jig. 

The coefficient of thermal diffusivity was cal- 

culated by measuring the temperature history at the 

centers of two slugs immersed in a constant temperature 

bath. The temperatures were measured with iron- 
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constantan thermocouples cast into the slugs. The 

constant temperature bath was water in a large 

laboratory thermos bottle. 

The slugs and the bath were allowed to reach their 

separate equilibrium temperatures as determined by the 

thermocouple readings. The slugs were then immersed 

in the bath and stirred vigorously. The temperature 

history being recorded on a calibrated, self-balancing 

potentiometer, A rectangular and a cylindrical slug 

were each tested several times to insure reproduci- 

bility. The thermal diffusivity was calculated for 

both geometries at several points in the temperature 

history and was 32.9 x 10D4 ft*/hour l 4%. 

The specific heat was determined by a calorimeter 

test and was 0.503 BTU/lb'F f 8%. The density of the 

model material is 0.046 lb/cubic inch. From these 

values the thermal conductivity was computed to be 

0.131 BTU/hr ft°F f 10%. 
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SHEAR TEST. 

8.1. Specimen and Apparatus. 

A sheet was bonded to metal blocks along opposite 

edges as shown in Fig. 13. A state of nearly plane 

stress is obtained in the sheet by loading the blocks. 

If the load on the block is constant, the problem is one 

of proportional loading as described in section 2.3. 

The stresses will be constant if the time variation of 

Poisson's ratio can be neglected. Experience with 

elasticity problems indicates that the observed varia- 

tion of v should not have a significant effect on the 

stress state. Therefore this configuration was chosen 

for some preliminary tests. 

The polariscope used is shown in Fig. 14. It is 

a versatile piece of equipment for general use in photo- 

viscoelasticity. It differs from the ordinary photo- 

elastic bench in that the polarizer-analyzer combination 

can be rapidly rotated by electric motors. 

Three light sources may be used: a point source 

(d.c. mercury arc with a Wratten 77A filter), a digtri- 

buted source (a.~. mercury arc and a green fluorescenti,and 

diffused source. Condensing lenses are used with the 

point source light to get parallel beam through the 

specimen. The lenses are removed from the light path 

when the distributed light sources are used. 
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Each lens stand is fitted with a ball-bearing 

carrier to support the rotating Polaroid around its 

outside edge. The Polaroid is driven by a stepping 

solenoid through a positive drive, link chain. When 

the solenoid is pulsed the Polaroid advances 9'. The 

pulse rate is continuously adjustable from 5 pulses 

per second to 1 pulse per 2 minutes. 

A 16 mm Cine Special camera is used to record the 

fringe patterns. Mounted next to the model and in the 

field of view of the camera is a digital timer with 

l/10 second minimum reading. Incorporated in the timer 

is a numbered wheel driven by a small rotating solenoid 

which is tied to the driver solenoids and indicating the 

angle of the polarizing axes. 

During the first minute after loading the camera 

is run at 16 frames per second to capture the rapidly 

changing fringe pattern. The frame rate is then re- 

duced to 1 frame per second. As the fringe patterns 

approach equilibrium the frame rate is correspondingly 

reduced. 

A model is mounted in grips in the loading frame 

and the upper grips are connected to a load cell through 

a universal joint. Two load cells of differing sensi- 

tivities are available. Four loading patterns may be 

used: constant load, constant strain, constant strain 
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rate and sinusoidal strain. 

Constant loads are applied by hanging weights 

on the specimens and constant strains are applied by 

using a heavy weight to force the loading mechanism 

against a present stop. Constant strain rate is applied 

to the model by driving the lower grips with a 220 volt, 

3 phase motor operating through a gear change set. By 

changing the gears the strain rate may be varied between 

0.0415 and 5.75 inches/minute. A spring loaded can and 

tappet mechanism supplies the sinusoidal strains, 

Figure A.6.2. The mechanism is driven by an electric 

motor through a Zeromax speed reducer. The frequency 

is continuously variable from 0 to 400 cycles/minute 

and the maximum amplitude may be varied between 0 and 

0.2 inches, by inserting appropriate cans. All of the 

loading mechanisms are mounted in a rigid frame. 

Strains are measured with differential transformers 

and read out on a Brush recorder or an oscilloscope 

equipped with a camera. 

8.2. Creep in Shear. 

In the first test, the model was "sheared" by 

constant loads Pl. As shown in Section 2.3, if the 

variation in v is neglected, the stress will be constant 

and be the same as if the material were elastic. The 
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stress state in an elastic material was determined by 

standard photoelastic means. It was found that the 

shear stress varied along the centerline as shown in 

Fig. 15. By symmetry, the point in the center of the 

specimen experiences a pure shear stress, i.e. u x=u Y 
= 0. 

Thus, constant loads Pl are expected to give a constant 

state of stress 

uX 
= 0, 

OY 
= 0, 

7 XY = 7, 

(1) 

at the center. The particle at the center experiences 

a creep test. By the formula of Section 5.1, the 

expected value of fringe order is 

n(t) = 27 $(t> . (2) 

The experimental results are shown in Fig. 16. They 

agree with the expected value. The small deviation 

is thought to be due to the large shear strains which 

may exceed the range of linear behavior. 

8.3. Rotation ,of Principal Axes. 

It was then decided to demonstrate the fact that 

the isoclinic angle does not coincide with the principal 

axes of stress. By first applying a load P2 and then, 
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at a later time to, applying the load PI, the prin- 

cipal axes of stress can be made to rotate. The iso- 

clinic angle can be simultaneously measured. 

The weight of the frame alone caused some shear 

stress which may be regarded as having reached an 

equilibrium state. By (5) of section 4.1, 

R XY 
= D(m) To , 

(3) 
Rx - R Y 

=o, 

where 7 = 0.30 psi. 0 
The loads P2 result in a state of stress at the 

center with 7 XY = 0. The stresses ux and oy determined 

by photoelasticity using oblique incidence were: 

u X = 1.95 P2, 

OY = 0.22 P2, 

7 XY = 0. 

Thus 

R XY 
= 0 ) 

Rx - R Y 
= D(t) (ox-uy). 

(4) 

(5) 
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The shear load Pl applied at time to results in 

stresses: 

7 XY = 7 , 

u X = 0 , (6) 

aY =o. 

From the photoelastic test 7 = 2.5 Pl. 

Thus, 
R 

XY - - D(t-to) 7 , 

(7) 
Rx - R Y = 0 . 

Since the problem is linear, the response to the 

three stress states can be superimposed. The combined 

values of the tensor R.. for t > t 
=J 0 are determined 

by adding (3>, (51, and (7): 

R XY = D(m) To + D(t-to)7 

Rx - R = D(t) o . 
Y 

The isoclinic angle is given by 

L 2Rxy tan 25 - Rx-R 
Y 

(8) 

(9) 



Thus, 

tan 25 = D(m) 2To + D(t-to) 27 

D(t) ax-ay D(t) ax-ay 

AL2d tan 2to+ 
W-t,) 

tan 25 
Jut) w> 

(10) 

The angle C predicted by (10) is compared with the 

observed isoclinic angle in Fig. 17. The agreement 

is within experimental error. 
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9. CIRCULAR DISK. 

9.1. Specimen and Apparatus. 

Typical models are shown in Fig.18 and Fig. 19. 

The outer boundary is circular but the inner boundary 

may be an irregular shape. The model may be heated 

along the inner boundary and loaded by a uniform 

pressure along the outer boundary. 

The loading jig is pictured in Fig. 20. Pressure 

is ap,plied through a O.OIOff thick latex diaphragm. 

The diaphragm is designed to have enough slack to 

follow the model as it deforms without stretching thus 

maintaining uniform pressure. 

The uniformity of the loading and the pressure 

efficiency of the diaphragm were determined with the 

elastic, Hysol 4485 specimens pictured in Fig. 19. 

Knowing the elasticity solution for the circular disk 

and the photoelastic fringe constant for the calibra- 

tion model material one may calculate the effective 

pressure acting on the model. This compared to the 

gage reading of the air pressure acting on the dia- 

phragm establishes the pressure efficiency of the jig. 

Non-uniformity in the pressure around the edges of the 

disk will cause the fringe pattern to depart from con- 

centricity. A measure of this non-uniformity is the 

per cent variation in fringe order around an imaginary 
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concentric circle drawn on the model. A picture of 

a loaded calibration specimen is shown in Fig. 21. 

The pressure. is uniform to within 10% and the jig 

efficiency (effective pressure/gage pressure) is 68%. 

The model is sandwiched in the jig between two 

$ '1 Plexiglas guards. Polaroid is bonded to the model 

side of each guard. These guards are not loaded. 

They serve to contain the thin latex diaphragm, to 

prevent the low modulus model from buckling, and to 

insulate the heated model. A copious layer of thin 

oil separates the model from the guards. Calibration 

tests show that the friction is insignificant. 

The model is heated along the inner edge by a re- 

sistance wire heater fitted into the opening. In the 

tests conducted, the model was heated to an equilibrium 

temperature and a preliminary test was run to determing 

the temperature distribution. A dummy model and guard of 

the same materials and dimensions as the test model and 

guard were placed in the loading jig. Holes 0.0201' in 
i 

diameter were drilled through the guard and into the 

model at several stations. These holes were filled with 

oil to minimize their effect on the temperature dis- 

tribution. The model was heated to equilibrium with 

constant power input to the heater. A small iron- 
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constanan thermocouple probe was placed sequentially 

into the holes to measure the temperature. Several 

tests showed that the temperature distribution could 

be repeated to within f 1°F. The model and apparatus 

used for this test is shown in Fig. 22. 

9.2. Exterior Pressure. 

The model of Fig. 18 was loaded with a step 

input (approximately 0.1 second rise time) of pressure 

which was maintained constant. The changing fringe 

patterns were recorded on a 16 mm movie camera running 

at 16 frames per second, shown in Fig. 23. 

It was shown in Section 2.4 that the stress field 

in a plane stress problem with stress boundary conditio ns 

and uniform temperature is the same as if the material 

were elastic. In particular, the stress is independent 

of the material properties. Thus, if the unheated 

model is subjected to constant external pressure B, the 

stress at any point should be constant: Each particle 

experiences creep at constant stress. The isoclinic 

angle at each point is then constant and coincides with 

the principal axes of stress. With the coordinate axes 

along the principal axes, equation (24) of section 5.1 

leads to 

n(t) = w> [a, - a21 . 
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Since Jr(t) is known from the tensile test, the expected 

fringe order can be calculated, to within a constant 

factor. 

The actual fringe pattern was recorded with a 

movie camera. A typical frame is shown in Fig. 24. 

The expected fringe order is compared with the observed 

fringe order at several points in Fig. 25, and the 

agreement is satisfactory. The stress is constant 

and the stress at the star root, point A, is found 

to be 41 psi or 3.9 p. This agrees with the photo- 

elasticity solution. 

9.3. Exterior Pressure with Temperature Gradient. 

The model was heated until a steady non-uniform 

temperature distribution was reached. This temperature 

was maintained throughout the loading. Thus each 

particle experiences isothermal deformations. The 

relations of section 5.1 apply to each point but the 

function $ will be different for each point because 

the temperature is different. 

It was expected that the stress at the inner 

boundary due to a step change in boundary pressure 

would be large at first, then diminish, but finally 

increasing towards the initial value: As shown in 

Section 2.5, the initial stress should be the same as 



for an elastic material and therefore, neglecting 

the effect of temperature on the value of G(o) and K(o), 

the stress should be the same as in the uniform tem- 

perature test. The hotter points on the inner boundary 

then begin to relax. The modulus G(t) becomes much 

smaller at the hotter points. Consequently, they 

"carry a smaller portion of the load", and the stress 

will decrease at the hotter points. As described in 

Section 2.6, the stress at long times is the same as 

for an elastic material; therefore, neglecting the 

effect of temperature on G(a) and K(m), the stress 

should approach that observed in the uniform temperature 

test. 

The fringe order actually observed at a point is 

shown in Fig. 26. At a point on the boundary the 

principal axis of stress is normal to the boundary at 

all times. The only non-zero stress is tangent to the 

boundary. Choose the coordinate axes along the prin- 

cipal axes of stress. Then (23) of section 5.1 applies: 

The stress calculated using the observed fringe order 

and the function Q(t) calculated from the optical 

creep function Q(t) for the particle temperature, is 

shown in Fig. 27. It has the expected character. The 
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exact analytical solution is unknown and so no com- 

parison is possible. 
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loading frame 
light source, filtered Hg arc 
Polarizer and l/4 X plate 
tensile specimen 
analyzer and l/4 X plate 
photomultiplier tube 
Brush recorder 
thermoelectric coolers 
power supply and control for 
coolers 

Figure 2. Tensile calibration bench. 
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Figure 3. Optical creep compliance Mix A. 
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Figure 4. Optical creep compliance Mix B. 
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Figure 5. Tensile creep compliance, Mix A. 
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Figure 6. Poisson ratio in creep, Mix A. 
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Figure 7. Shear creep compliance (calculated), Mix A. 
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Figure 8. Bulk creep compliance (calculated), Mix A. 
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Figure 9. Tensile creep compliance at several 
temperatures Mix B. 
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Mix B. 
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Figure 11. Inverse optical creep function. 



Figure 12. Apparatus for thermal expansion determination. 
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Figure 13. Shear model. 
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light source, filtered Hg arc 
Polaroid, rotating 
loading frame 
load cell 
model 
timer and angle indicator 
Polaroid, rotating 
camera 
rotating Polaroid control and power supply 
drive solenoids 
solenoid valves for pressure loading 

Figure 14. Photovisocleastic bench. 
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Figure 15. Shear stress distribution. 
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Figure 16. Fringe order in shear test. 
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Figure 1'7. Isoclinic angle in tension-shear test. 



Figure 18. Star grain model, 
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Figure 19. Hysal 4485 calibration specimens 
for calibrating pressure jig. 
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C guards, (Polaroid laminated to 
Plexiglas) 

Figure 20. Pressure loading jig (model removed) 
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Figure 21. Pressure calibration specimen with circular 
hole (star cutouts in Polaroid). 
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(a) Potentiometer 
(b) Thermocouple probe 
(4 measuring stations 
(d) heater 
(e) pressure loading jig 

Figure 22. Apparatus for determining temperature distribution. 
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[EL{ light source, filtered Hg 
constant pressure air supply 

[CZ{ loading jig (Polaroids incorporated) 
camera 

(e) heater Variac 

Figure 23. Horizontal polariscope for heated model studies. 
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Figure 24. Isothermal pressurized grain model, 
6300 seconds after loading. 
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Figure 25. Fringe order at uniform temperature. 



IO 

9 

7 

2 

0 
I 

Figure 26. Fringe order, heated model. 
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Figure 27. Stress at star root (point A), heated 
model.  
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